Abbreviations
ABF:
antibiotic-free
AGPs:
antibiotic growth promoters
DM:
dry matter
EOs:
essential oils
FDA:
Food and Drug Administration
HMG-CoA:
hydroxymethylglutaryl coenzyme A
IFAs:
in-feed antibiotics
IFN:
interferon
IL:
interleukin
LPS:
lipopolysaccharide
NAE:
no antibiotics ever
NE:
necrotic enteritis
NO:
nitric oxide
OIE:
World Organization for Animal Health
OUT:
operational taxonomic units
PTS:
propyl thiosulfinate
PTSO:
propyl thiosulfinate oxide
SCFA:
short-chain fatty acid
SFBs:
segmented filamentous bacteria
TNFSF15:
TNF superfamily member 15
VFAs:
volatile fatty acids
VFD:
Veterinary Feed Directive
References
- 1.
Castanon JIR (2007) History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 86:2466–2471
Gadde U, Kim WH, Oh ST, Lillehoj HS (2017) Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 18:26–45
Food and Drug Administration (2013) Guidance for Industry #213 new animal drugs and new animal drug combination products administered in or on medicated feed or drinking water of food- producing animals: recommendations for drug sponsors for voluntarily aligning product use conditions with GFI #209
Lillehoj HS, Lee KW (2012) Immune modulation of innate immunity as alternatives-to-antibiotics strategies to mitigate the use of drugs in poultry production. Poult Sci 91:1286–1291
Lee SH, Lillehoj HS, Jang SI, Kim DK, Ionescu C, Bravo D (2010) Effect of dietary curcuma, capsicum, and lentinus on enhancing local immunity against
Eimeria acervulina infection. J Poult Sci 47:89–95
Lee SH, Lillehoj HS, Jang SI, Lee KW, Park MS, Bravo D, Lillehoj EP (2011) Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis. Br J Nutr 106:862–869
Lee SH, Lillehoj HS, Jang SI, Lillehoj EP, Min W, Bravo DM (2013) Dietary supplementation of young broiler chickens with
Capsicum and turmeric oleoresins increases resistance to necrotic enteritis. Br J Nutr 110:840–847
Kim DK, Lillehoj HS, Lee SH, Jang SI, Lillehoj EP, Bravo D (2013) Dietary
Curcuma longa enhances resistance against
Eimeria maxima and
Eimeria tenella infections in chickens. Poult Sci 92:2635–2643
Lee SH, Lillehoj HS, Hong YH, Jang SI, Lillehoj EP, Ionescu C, Mazuranok L, Bravo D (2010) In vitro effects of plant and mushroom extracts on immunological function of chicken lymphocytes and macrophages. Br Poult Sci 51:213–221
Lee SH, Lillehoj HS, Jang SI, Lee KW, Bravo D, Lillehoj EP (2011) Effects of dietary supplementation with phytonutrients on vaccine-stimulated immunity against infection with
Eimeria tenella. Vet Parasitol 181:97–105
Bravo D, Pirgozliev V, Rose SP (2014) A mixture of carvacrol, cinnamaldehyde, and capsicum oleoresin improves energy utilization and growth performance of broiler chickens fed maize-based diet. J Anim Sci 92:1531–1536
Bravo D, Ionescu C (2008) Meta-analysis of the effect of a mixture of carvacrol, cinnamaldehyde and capsicum oleoresin in broilers. Poult Sci 87:75
Kim JE, Lillehoj HS, Hong YH, Kim GB, Lee SH, Lillehoj EP, Bravo DM (2015) Dietary
Capsicum and
Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds. Res Vet Sci 102:150–158
Settle T, Leonard SS, Falkenstein E, Fix N, Van Dyke K, Klandorf H (2014) Effects of a phytogenic feed additive versus an antibiotic feed additive on oxidative stress in broiler chicks and a possible mechanism determined by electron spin resonance. Int J Poult Sci 13:62
Kim DK, Lillehoj HS, Lee SH, Jang SI, Bravo D (2010) High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or
Capsicum oleoresin. Poult Sci 89:68–81
Kim DK, Lillehoj HS, Lee SH, Lillehoj EP, Bravo D (2013) Improved resistance to
Eimeria acervulina infection in chickens due to dietary supplementation with garlic metabolites. Br J Nutr 109:76–88
Kim DK, Lillehoj HS, Lee SH, Jang SI, Park MS, Min W, Lillehoj EP, Bravo D (2013) Immune effects of dietary anethole on
Eimeria acervulina infection. Poult Sci 92:2625–2634
Lee Y, Lee SH, Gadde UD, Oh S, Lee SJ, Lillehoj HS (2017) Dietary Allium hookeri reduces inflammatory response and increases expression of intestinal tight junction proteins in LPS-induced young broiler chicken. Res Vet Sci 112:149–155
Lillehoj HS, Kim DK, Bravo DM, Lee SH (2011) Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc 5:S34
Furness JB, Rivera LR, Cho H-J, Bravo DM, Callaghan B (2013) The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10:729–740
Oh ST, Lillehoj HS (2016) The role of host genetic factors and host immunity in necrotic enteritis. Avian Pathol 45:313–316
Liu Y, Song M, Che TM, Bravo D, Pettigrew JE (2012) Anti-inflammatory effects of several plant extracts on porcine alveolar macrophages in vitro. J Anim Sci 90:2774–2783
Wong SYY, Grant IR, Friedman M, Elliott CT, Situ C (2008) Antibacterial activities of naturally occurring compounds against
Mycobacterium avium subsp.
paratuberculosis. Appl Environ Microbiol 74:5986–5990
Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of
Melaleuca alternifolia (tea tree) oil on
Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920
Lambert RJW, Skandamis PN, Coote PJ, Nychas G (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462
Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1:125–129
Burt SA, van der Zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra W, Haagsman HP, Veldhuizen EJA (2007) Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in
Escherichia coli O157: H7. Appl Environ Microbiol 73:4484–4490
Gülçin Ì, Şat İG, Beydemir Ş, Elmastaş M, Küfrevioǧlu Öİ (2004) Comparison of antioxidant activity of clove (
Eugenia caryophylata Thunb) buds and lavender (
Lavandula stoechas L.). Food Chem 87:393–400
Economou KD, Oreopoulou V, Thomopoulos CD (1991) Antioxidant activity of some plant extracts of the family Labiatae. J Am Oil Chem Soc 68:109–113
Frankič T, Levart A, Salobir J (2010) The effect of vitamin E and plant extract mixture composed of carvacrol, cinnamaldehyde and capsaicin on oxidative stress induced by high PUFA load in young pigs. Animal 4:572–578
Teissedre PL, Waterhouse AL (2000) Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. J Agric Food Chem 48:3801–3805
Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660
Lee SH, Lee SY, Son DJ, Lee H, Yoo HS, Song S, Oh KW, Han DC, Kwon BM, Hong JT (2005) Inhibitory effect of 2′-hydroxycinnamaldehyde on nitric oxide production through inhibition of NF-κB activation in RAW 264.7 cells. Biochem Pharmacol 69:791–799
Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB (1999) Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. J Immunol 163:3474–3483
Moeser AJ, Blikslager AT (2007) Mechanisms of porcine diarrheal disease. J Am Vet Med Assoc 231:56–67
Manzanilla EG, Perez JF, Martin M, Kamel C, Baucells F, Gasa J (2004) Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. J Anim Sci 82:3210–3218
Nofrarias M, Manzanilla EG, Pujols J, Gibert X, Majo N, Segalés J, Gasa J (2006) Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaned pigs. J Anim Sci 84:2735–2742
Michiels J, Missotten J, Van Hoorick A, Ovyn A, Fremaut D, De Smet S, Dierick N (2010) Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning. Arch Anim Nutr 64:136–154
Fairbrother JM, Nadeau É, Gyles CL (2005)
Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Heal Res Rev 6:17–39
Nagy B, Fekete PZ (1999) Enterotoxigenic
Escherichia coli (ETEC) in farm animals. Vet Res 30:259–284
Liu Y, Song M, Che TM, Almeida JAS, Lee JJ, Bravo D, Maddox CW, Pettigrew JE (2013) Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic. J Anim Sci 91:5294–5306
Liu Y, Song M, Che TM, Lee JJ, Bravo D, Maddox CW, Pettigrew JE (2014) Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an infection. J Anim Sci 92:2050–2062
Liu Y, Che TM, Song M, Lee JJ, Almeida JAS, Bravo D, Van Alstine WG, Pettigrew JE (2013) Dietary plant extracts improve immune responses and growth efficiency of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci 91:5668–5679
Calsamiglia S, Castillejos L, Busquet M (2006) Alternatives to antimicrobial growth promoters in cattle. Recent Adv Anim Nutr 39:129
Tamminga S (1996) A review on environmental impacts of nutritional strategies in ruminants. J Anim Sci 74:3112–3124
Van der Aar PJ, Molist F, van der Klis JD (2016) The central role of intestinal health on the effect of feed additives on feed intake in swine and poultry. Anim Feed Sci Technol.
https://doi.org/10.1016/j.anifeedsci.2016.07.019
Nagaraja TG, Newbold CJ, Van Nevel CJ, Demeyer DI (1997) Manipulation of ruminal fermentation. In: The Rumen microbial ecosystem. Springer, New York, p 523–632
Duffield TF, Rabiee AR, Lean IJ (2008) A meta-analysis of the impact of monensin in lactating dairy cattle. Part 2. Production effects. J Dairy Sci 91:1347–1360
Duffield TF, Merrill JK, Bagg RN (2012) Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J Anim Sci 90:4583–4592
Benchaar C, Petit HV, Berthiaume R, Ouellet DR, Chiquette J, Chouinard PY (2007) Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J Dairy Sci 90:886–897
Cox SD, Mann CM, Markham JL (2001) Interactions between components of the essential oil of
Melaleuca alternifolia. J Appl Microbiol 91:492–497
Patra AK, Yu Z (2012) Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl Environ Microbiol 78:4271–4280
Ferme D, Banjac M, Calsamiglia S, Busquet M, Kamel C, Avguštin G (2004) The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling. Folia Microbiol (Praha) 49:151–155
Wallace RJ, Arthaud L, Newbold CJ (1994) Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl Environ Microbiol 60:1762–1767
Min BR, Hart SP, Miller D, Tomita GM, Loetz E, Sahlu T (2005) The effect of grazing forage containing condensed tannins (饲用单宁酸) on gastro-intestinal parasite infection and milk composition in Angora does. Vet Parasitol 130:105–113
Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins (饲用单宁酸) on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19
Busquet M, Calsamiglia S, Ferret A, Kamel C (2006) Plant extracts affect in vitro rumen microbial fermentation. J Dairy Sci 89:761–771
Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44:1202–1205
Busquet M, Calsamiglia S, Ferret A, Cardozo PW, Kamel C (2005) Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J Dairy Sci 88:2508–2516
Miller TL, Wolin MJ (2001) Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl ∼ SCoA reductase inhibitors. J Dairy Sci 84:1445–1448
Cardozo PW, Calsamiglia S, Ferret A, Kamel C (2004) Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J Anim Sci 82:3230–3236
Foskolos A, Siurana A, Rodriquez-Prado M, Ferret A, Bravo D, Calsamiglia S (2015) The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system. J Dairy Sci 98:5482–5491
Hino T, Russell JB (1985) Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Appl Environ Microbiol 50:1368–1374
Tekippe JA, Tacoma R, Hristov AN, Lee C, Oh J, Heyler KS, Cassidy TW, Varga GA, Bravo D (2013) Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J Dairy Sci 96:7892–7903
Wall EH, Doane PH, Donkin SS, Bravo D (2014) The effects of supplementation with a blend of cinnamaldehyde and eugenol on feed intake and milk production of dairy cows. J Dairy Sci 97:5709–5717
Oguey C, Wall EH (2016) 1570 A blend of cinnamaldehyde, eugenol, and capsicum oleoresin improves milking performance in lactating dairy cows. J Anim Sci 94:763
Bravo D, Pyatt N, Doane PH, Cecava M (2009) Meta analysis of growing ruminants fed a mixture of eugenol, cinnamaldehyde and capsicum oleoresin. J Dairy Sci 92:374
Reddy L, Odhav B, Bhoola KD (2003) Natural products for cancer prevention: a global perspective. Pharmacol Ther 99:1–13
Trouillas P, Calliste C-A, Allais D-P, Simon A, Marfak A, Delage C, Duroux J-L (2003) Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chem 80:399–407
Cardozo PW, Calsamiglia S, Ferret A, Kamel C (2006) Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J Anim Sci 84:2801–2808
Fandiño I, Calsamiglia S, Ferret A, Blanch M (2008) Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers fed a high concentrate diet. Anim Feed Sci Technol 145:409–417
Rodríguez-Prado M, Ferret A, Zwieten J, Gonzalez L, Bravo D, Calsamiglia S (2012) Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high-concentrate diet. J Anim Sci 90:1879–1884
Tager LR, Krause KM (2011) Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J Dairy Sci 94:2455–2464
Oh J, Hristov AN, Lee C, Cassidy T, Heyler K, Varga GA, Pate J, Walusimbi S, Brzezicka E, Toyokawa K, Werner J, Donkin SS, Elias R, Dowd S, Bravo D (2013) Immune and production responses of dairy cows to postruminal supplementation with phytonutrients. J Dairy Sci 96:7830–7843
French N, Kennelly JJ (1990) Effects of feeding frequency on ruminal parameters, plasma insulin, milk yield, and milk composition in Holstein cows. J Dairy Sci 73:1857–1863
Oh J, Giallongo F, Frederick T, Pate J, Walusimbi S, Elias RJ, Wall EH, Bravo D, Hristov AN (2015) Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J Dairy Sci 98:6327–6339
Stelwagen K, Wall EH, Bravo DM (2016) 1395 Effect of rumen-protected capsicum on milk production in early lactating cows in a pasture-based system. J Anim Sci 94:675
Wall EH, Bravo DM (2016) Supplementation with rumen-protected capsicum oleoresin increases milk production and component yield in lactating dairy cows. J Anim Sci 94:755
Oh J, Harper M, Giallongo F, Bravo DM, Wall EH, Hristov AN (2017) Effects of rumen-protected Capsicum oleoresin on immune responses in dairy cows intravenously challenged with lipopolysaccharide. J Dairy Sci 100:1902–1913
Oh J, Harper M, Giallongo F, Bravo DM, Wall EH, Hristov AN (2017) Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows. J Dairy Sci 100:1888–1901
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host–gut microbiota metabolic interactions. Science 336:1262–1267
Cox LM, Blaser MJ (2013) Pathways in microbe-induced obesity. Cell Metab 17:883–894
Allen HK, Stanton TB (2014) Altered egos: antibiotic effects on food animal microbiomes. Annu Rev Microbiol 68:297–315
Krishnan S, Alden N, Lee K (2015) Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol 36:137–145
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA (2014) The chicken gastrointestinal microbiome. FEMS Microbiol Lett 360:100–112
Nakphaichit M, Thanomwongwattana S, Phraephaisarn C, Sakamoto N, Keawsompong S, Nakayama J, Nitisinprasert S (2011) The effect of including
Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poult Sci 90:2753–2765
Fukuda S, Ohno H (2014) Gut microbiome and metabolic diseases. Semin Immunopathol 36:103–114
Snel J, Heinen PP, Blok HJ, Carman RJ, Duncan AJ, Allen PC, Collins MD (1995) Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus”. Int J Syst Bacteriol 45:780–782
Nagano Y, Itoh K, Honda K (2012) The induction of Treg cells by gut-indigenous
Clostridium. Curr Opin Immunol 24:392–397
Kim WH, Jeong J, Park AR, Yim D, Kim Y-H, Kim KD, Chang HH, Lillehoj HS, Lee B-H, Min W (2012) Chicken IL-17F: identification and comparative expression analysis in
Eimeria-infected chickens. Dev Comp Immunol 38:401–409
Callaway TR, Edrington TS, Rychlik JL, Genovese KJ, Poole TL, Jung YS, Bischoff KM, Anderson RC, Nisbet DJ (2003) Ionophores: their use as ruminant growth promotants and impact on food safety. Curr Issues Intest Microbiol 4:43–51
Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590
Windisch W, Schedle K, Plitzner C, Kroismayr A (2008) Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 86:E140–E148
Scalbert A, Morand C, Manach C, Rémésy C (2002) Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 56:276–282
Redondo LM, Chacana PA, Dominguez JE, Miyakawa MEF (2014) Perspectives in the use of tannins (饲用单宁酸) as alternative to antimicrobial growth promoter factors in poultry. Front Microbiol 5:118
Elizondo AM, Mercado EC, Rabinovitz BC, Fernandez-Miyakawa ME (2010) Effect of tannins (饲用单宁酸) on the in vitro growth of
Clostridium perfringens. Vet Microbiol 145:308–314
Redondo LM, Dominguez JE, Rabinovitz BC, Redondo EA, Miyakawa MEF (2015) Hydrolyzable and condensed tannins (饲用单宁酸) resistance in
Clostridium perfringens. Anaerobe 34:139–145
Min YW, Rhee P-L (2015) The role of microbiota on the gut immunology. Clin Ther 37:968–975
Vasta V, Makkar HPS, Mele M, Priolo A (2008) Ruminal biohydrogenation as affected by tannins (饲用单宁酸) in vitro. Br J Nutr 102:82–92
Fernandez Miyakawa M (2016) Impact of dietary tannins (饲用单宁酸) on rumen microbiota of bovines. In: 2
nd international symposium on alternatives to antibiotics, OIE, Paris, 12–15 Dec 2016
- 102.
Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31:15–31
Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen Y, Knight R, Ahima RS, Bushman F, Wu GD (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–1724
Pages: Page 1, Page 2, Page 3, Page 4