fnut-06-00154
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Supplementary Material
The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fnut.2019.00154/full#supplementary-material
References
1. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease.
Physiol Rev. (2010) 90:859–904. doi: 10.1152/physrev.00045.2009
PubMed Abstract |
CrossRef Full Text |
Google Scholar
2. Bensussan NC, Routhiau VG. The immune system and the gut microbiota: friends or foes?
Nat Rev Immunol. (2010) 10:735–44. doi: 10.1038/nri2850
CrossRef Full Text |
Google Scholar
3. Llewellyn MS, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho GR. The biogeography of the Atlantic salmon (
Salmo salar) gut microbiome.
ISME J. (2016) 10:1280–4. doi: 10.1038/ismej.2015.189
PubMed Abstract |
CrossRef Full Text |
Google Scholar
4. Hartviksen M, Vecino JLG, Ringø E, Bakke AM, Wadsworth S, Krogdahl Å, et al. Alternative dietary protein sources for Atlantic salmon (
Salmo salar L.) effect on intestinal microbiota, intestinal and liver histology and growth.
Aquaculture Nutrit. (2014) 20:381–98. doi: 10.1111/anu.12087
CrossRef Full Text
5. Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl Å, et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story?
Aquaculture Nutr. (2016) 22:219–82. doi: 10.1111/anu.12346
CrossRef Full Text |
Google Scholar
6. Wang J, Tao Q, Wang Z, Mai K, Xu W, Zhang Y, et al. Effects of fish meal replacement by soybean meal with supplementation of functional compound additives on intestinal morphology and microbiome of Japanese seabass (
Lateolabrax japonicus).
Aquac Res. (2016) 48:2186–97. doi: 10.1111/are.13055
CrossRef Full Text |
Google Scholar
7. Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R. PCR-TTGE analysis of 16S rRNA from rainbow trout (
Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria.
PLoS ONE. (2012) 7:e31335. doi: 10.1371/journal.pone.0031335
PubMed Abstract |
CrossRef Full Text |
Google Scholar
8. Yaghoubi M, Mozanzadeh MT, Marammazi JG, Safari O, Gisbert E. Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (
Sparidentex hasta).
Aquaculture. (2016) 464:50–9. doi: 10.1016/j.aquaculture.2016.06.002
CrossRef Full Text |
Google Scholar
9. Merrifield DL, Dimitroglou A, Bradley G, Baker RT, Davies SJ. Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout,
Oncorhynchus mykiss (Walbaum).
J. Fish Dis. (2010) 32:755–66. doi: 10.1111/j.1365-2761.2009.01052.x
PubMed Abstract |
CrossRef Full Text |
Google Scholar
10. Zhou Z, Ringø E, Olsen RE, Song SK. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: a review.
Aquaculture Nutr. (2016) 24:644–65. doi: 10.1111/anu.12532
CrossRef Full Text |
Google Scholar
11. Refstie S, Landsverk T, Bakke-McKellep AM, Ringø E, Sundby A, Shearer KD, et al. Digestive capacity, intestinal morphology, and microflora of 1-year and 2-year old Atlantic cod (
Gadus morhua) fed standard or bioprocessed soybean meal.
Aquaculture. (2006) 261:269–84. doi: 10.1016/j.aquaculture.2006.07.011
PubMed Abstract |
CrossRef Full Text |
Google Scholar
12. Yuan X, Zhou Y, Liang XF, Guo X, Fang L, Li J, et al. Effect of dietary glutathione supplementation on the biological value of rapeseed meal to juvenile grass carp,
Ctenopharyngodon idellus.
Aquaculture Nutr. (2015) 21:73–84. doi: 10.1111/anu.12142
CrossRef Full Text |
Google Scholar
13. Li Y, Yang P, Zhang Y, Zhang Y, Ai Q, Xu W, et al. Effects of dietary glycinin on the growth performance, digestion, intestinal morphology and bacterial community of juvenile turbot,
Scophthalmus maximus L.
Aquaculture. (2017) 479:125–33. doi: 10.1016/j.aquaculture.2017.05.008
CrossRef Full Text |
Google Scholar
14. Silva FC, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ. Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead sea bream (
Sparus aurata) and intestinal contents in goldfish (
Carassius auratus).
FEMS Microbiol. Ecol. (2011) 78:285–96. doi: 10.1111/j.1574-6941.2011.01155.x
PubMed Abstract |
CrossRef Full Text |
Google Scholar
15. Pettersson A, Johnsson L, Brännäs E, Pickova J. Effects of rapeseed oil replacement in fish feed on lipid composition and self-selection by rainbow trout (
Oncorhynchus mykiss).
Aquaculture Nutr. (2010) 15:577–86. doi: 10.1111/j.1365-2095.2008.00625.x
CrossRef Full Text |
Google Scholar
16. Tanemura N, Okano K, Sugiura S, Sugiura S. Effects of culturing rapeseed meal, soybean meal, macrophyte meal, and algal meal with three species of white-rot fungi on their
in vitro and
in vivo digestibilities evaluated using rainbow trout.
Aquaculture. (2016) 453:130–4. doi: 10.1016/j.aquaculture.2015.12.001
CrossRef Full Text |
Google Scholar
17. Cheng Z, Ai Q, Mai K, Xu W. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass,
Lateolabrax japonicus.
Aquaculture. (2010) 305:102–8. doi: 10.1016/j.aquaculture.2010.03.031
CrossRef Full Text |
Google Scholar
18. Satoh S, Higss DA, Dosanjh BS. Effect of extrusion processing on the nutritive value of canola meal for chinook salmon (
Oncorhynchus tshawytscha) in seawater.
Aquaculture Nutr. (2015) 4:115–22. doi: 10.1046/j.1365-2095.1998.00056.x
CrossRef Full Text
19. Webster CD, Tiu LG, Tidwell JH, Grizzle JM. Growth and body composition of channel catfish (
Ictalurus punctatus) fed diets containing various percentages of canola meal.
Aquaculture. (1997) 150:103–12. doi: 10.1016/S0044-8486(96)01471-8
CrossRef Full Text |
Google Scholar
20. Bu XY, Wang YY, Chen FY, Tang BB, Luo CZ, Wang Y, et al. An evaluation of replacing fishmeal with rapeseed meal in the diet of
Pseudobagrus ussuriensis: growth, feed utilization, nonspecific immunity, and growth-related gene expression.
J World Aquac Soc. (2018) 49:1068–80. doi: 10.1111/jwas.12470
CrossRef Full Text |
Google Scholar
21. Lim C, Beames RM, Eales JG, Prendergast AF, McLeese JM, Shearer KD, et al. Nutritive values of low and high fibre canola meals for shrimp (
Penaeus vannamei).
Aquaculture Nutr. (2015) 3:269–79. doi: 10.1046/j.1365-2095.1997.00048.x
CrossRef Full Text |
Google Scholar
22. Ngo DT, Pirozzi I, Glencross B. Digestibility of canola meals in barramundi (Asian seabass;
Lates calcarifer).
Aquaculture. (2015) 435:442–9. doi: 10.1016/j.aquaculture.2014.10.031
CrossRef Full Text |
Google Scholar
23. Rasid R, Brown J, Pratoomyot J, Monroig O, Shinn AP. Growth performance, nutrient utilisation and body composition of
Macrobrachium rosenbergii fed graded levels of phytic acid.
Aquaculture. (2017) 479:850–6. doi: 10.1016/j.aquaculture.2017.07.029
CrossRef Full Text |
Google Scholar
24. Ghosh K, Ray KA, Ringø E. Applications of plant ingredients for tropical and subtropical freshwater finfish: possibilities and challenges.
Rev Aquaculture. (2018) 11:93–815. doi: 10.1111/raq.12258
CrossRef Full Text |
Google Scholar
25. Chung KT, Wei CI, Johnson MG. Are tannins a double-edged sword in biology and health?.
Trends Food Sci Techn. (1998) 9:168–75. doi: 10.1016/S0924-2244(98)00028-4
CrossRef Full Text |
Google Scholar
26. Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish.
Aquaculture. (2001) 199:197–227. doi: 10.1016/S0044-8486(01)00526-9
CrossRef Full Text |
Google Scholar
27. Tosi G, Massi P, Antongiovanni M, Buccioni A, Minieri S, Marenchino L, et al. Efficacy test of a hydrolysable tannin extract against necrotic enteritis in challenged broiler chickens.
Ital J Anim Sci. (2013) 12:392–5. doi: 10.4081/ijas.2013.e62
CrossRef Full Text |
Google Scholar
28. Bilić-Šobot D, Kubale V, Škrlep M, Candek-Potokar M, Prevolnik Povše M, Fazarinc G. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs.
Arch Anim Nutr. (2016) 70:378–88. doi: 10.1080/1745039X.2016.1206735
PubMed Abstract |
CrossRef Full Text |
Google Scholar
29. Barszcz M, Taciak M, Tuśnio A, Skomiał J. Effects of dietary level of tannic acid and protein on internal organ weights and biochemical blood parameters of rats.
PLoS ONE. (2018) 13:e0190769. doi: 10.1371/journal.pone.0190769
PubMed Abstract |
CrossRef Full Text |
Google Scholar
30. Rivera-Méndez C, Plascencia A, Torrentera N, Zinn RA. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase.
J Appl Anim Res. (2016) 45:199–203. doi: 10.1080/09712119.2016.1141776
CrossRef Full Text
31. Chen L, Feng L, Jiang WD, Jiang J, Wu P, Zhao J. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (
Ctenopharyngodon idella) fed riboflavin deficient diet.
Fish Shellfish Immunol. (2015) 47:470–84. doi: 10.1016/j.fsi.2015.09.037
PubMed Abstract |
CrossRef Full Text |
Google Scholar
32. Safari O, Boldaji FA. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (
Ctenopharyngodon idella).
Aquaculture Nutr. (2015) 11:139–46. doi: 10.1111/j.1365-2095.2004.00333.x
CrossRef Full Text |
Google Scholar
33. Zhang D, Wu Z, Chen X, Wang H, Guo D. Effect of
Bacillus subtilis on intestinal apoptosis of grass carp
Ctenopharyngodon idella orally challenged with Aeromonas hydrophila.
Fish Sci. (2018) 85:187–97. doi: 10.1007/s12562-018-1272-8
CrossRef Full Text |
Google Scholar
34. Ma L, Huang F, Wu JK, Yong WY, Cao JM. Effects of different rapeseed meal levels on growth, serum biochemical indices and toxins residues in
Ctenoparyngodon idellus.
J Fish China. (2005) 29:798–803.
35. Tan Q, Liu Q, Chen X, Wang M, Wu Z. Growth performance, biochemical indices and hepatopancreatic function of grass carp,
Ctenopharyngodon idellus, would be impaired by dietary rapeseed meal.
Aquaculture. (2013) 414–5, 119–26. doi: 10.1016/j.aquaculture.2013.07.036
CrossRef Full Text |
Google Scholar
36. Suya J. Effects of feeding four kinds of rapeseed meal on growth performance of grass carp (
Ctenopharyngodon idella).
Chin J Anim Nutr. (2011) 23:349–56.
Google Scholar
37. Prusty AK, Sahu NP, Pal AK, Reddy AK. Effect of dietary tannin on growth and haemato-immunological parameters of
Labeo rohita (Hamilton) fingerlings.
Anim. Feed Sci. Technol. (2007) 136:96–108. doi: 10.1016/j.anifeedsci.2006.08.023
CrossRef Full Text |
Google Scholar
38. Buyukcapar HM, Atalay A, Kamalak A. Growth performance of Nile Tilapia (
Oreochromis niloticus) fed with diets containing different levels of hydrolysable and condensed tannin.
J Agricult Sci Techn. (2011) 13:1045–51. doi: 10.1007/s10460-011-9341-y
CrossRef Full Text |
Google Scholar
39. Wang SM, Chen SL, Cui YB. On The procedures of chloroform-methanol extraction for the determination of lipid content of fish samples.
Acta Hydrobiologica Sinica. (1993) 17:193–6.
40. Natalia Y, Hashim R, Ali A, Chong A. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (
Osteoglossidae).
Aquaculture. (2004) 233:305–20. doi: 10.1016/j.aquaculture.2003.08.012
CrossRef Full Text |
Google Scholar
41. Worthington.
Worthington Enzyme Manual: Enzymes and Related Biochemicals. Lakewood, NJ: Worthington Biochemical Corporation (1993). p. 41.
42. Borlongan IG. Studies on the digestive lipases of milkfish,
Chanos chanos.
Aquaculture. (1990) 89:315–25. doi: 10.1016/0044-8486(90)90135-A
CrossRef Full Text |
Google Scholar
43. Xiong F, Wu SG, Zhang J, Jakovlić I, Li WX, Zou H. Dietary bile salt types influence the composition of biliary bile acids and gut microbiota in grass carp.
Front. Microbiol. (2018) 9:2209. doi: 10.3389/fmicb.2018.02209
PubMed Abstract |
CrossRef Full Text |
Google Scholar
44. Lozupone C, Hamady M, Knight R. UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context.
BMC Bioinform. (2006) 7:371–85. doi: 10.1186/1471-2105-7-371
PubMed Abstract |
CrossRef Full Text |
Google Scholar
45. Yao JT, Kong C, Hua XM, Yang JF, Liu T, Wang G, et al. T1R1 expression in obscure puffer (
Takifugu fasciatus) is associated with effect of dietary soybean antigenic protein on intestinal health.
Aquaculture. (2018) 501:202–12. doi: 10.1016/j.aquaculture.2018.11.010
CrossRef Full Text |
Google Scholar
46. Wu ZX, Feng X, Xie LL, Peng XY, Yuan J, Chen XX. Effect of probiotic
Bacillus subtilis Ch9 for grass carp,
Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora.
J Appl Ichthyol. (2012) 28:721–7. doi: 10.1111/j.1439-0426.2012.01968.x
CrossRef Full Text |
Google Scholar
47. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes.
Science. (2011) 334:105–8. doi: 10.1126/science.1208344
PubMed Abstract |
CrossRef Full Text |
Google Scholar
48. André D, de Lange CFM, France J, Bureau J. Quantitative description of body composition and rates of nutrient deposition in rainbow trout (
Oncorhynchus mykiss).
Aquaculture. (2007) 273:165–81. doi: 10.1016/j.aquaculture.2007.09.026
CrossRef Full Text |
Google Scholar
49. Ngo DT, Wade NM, Pirozzi I, Glencross BD. Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian seabass;
Lates calcarifer).
Aquaculture. (2016) 464:95–105. doi: 10.1016/j.aquaculture.2016.06.020
CrossRef Full Text |
Google Scholar
50. Luo Y, Ai Q, Mai K, Zhang W, Xu W, Zhang Y, et al. Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (
Rachycentron canadum).
Aquaculture. (2012) 368–9:109–16. doi: 10.1016/j.aquaculture.2012.09.013
CrossRef Full Text |
Google Scholar
51. Burel C, Boujard T, Escaffre AM, Kaushik SJ, Boeuf G, Mol KA, et al. Dietary low-glucosinolate rapeseed meal affects thyroid status and nutrient utilization in rainbow trout
(Oncorhynchus mykiss).
Br J Nutr. (2000) 83:653–64. doi: 10.1017/S0007114500000830
PubMed Abstract |
CrossRef Full Text |
Google Scholar
52. Zhou QC, Yue YR. Effect of replacing soybean meal with canola meal on growth, feed utilization and haematological indices of juvenile hybrid tilapia,
Oreochromis niloticus ×
Oreochromis aureus.
Aquac Res. (2010) 41:982–90. doi: 10.1111/j.1365-2109.2009.02381.x
CrossRef Full Text |
Google Scholar
53. Omnes MH, Goasduff JL, Le Hervé D, Le Bayon N, Quazuguel P, Robin JH. Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (
Dicentrarchus labrax L.).
Aquaculture Reports. (2017) 6:21–7. doi: 10.1016/j.aqrep.2017.01.004
CrossRef Full Text |
Google Scholar
54. Moseley G. The effect of diets containing field beans of high or low polyphenolic content on the activity of digestive enzymes in the intestines of rats.
J Sci Food Agric. (2010) 31:255–9. doi: 10.1002/jsfa.2740310307
PubMed Abstract |
CrossRef Full Text
55. Mehansho H, Hagerman A, Clements S, Butler L, Rogler J, Carlson DM. Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels.
Proc Natl Acad Sci USA. (1983) 80:48–52. doi: 10.1073/pnas.80.13.3948
PubMed Abstract |
CrossRef Full Text |
Google Scholar
56. Singleton VL, Kratzer FH. Toxicity and related physiological activity of phenolic substances of plant origin.
J Agric Food Chem. (1969) 17:497–512. doi: 10.1021/jf60163a004
CrossRef Full Text |
Google Scholar
57. Varanka Z, Rojik I, Varanka I, Nemcsók J, Abrahám M. Biochemical and morphological changes in carp (
Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid.
Comparat Biochem Physiol Part C Toxicol Pharmacol. (2001) 128:467–77. doi: 10.1016/S1532-0456(01)00166-1
PubMed Abstract |
CrossRef Full Text |
Google Scholar
58. Blazer VS, Wolke RE. The effects of α-tocopherol on the immune response and non-specific resistance factors of rainbow trout (
Salmo gairdneri Richardson).
Aquaculture. (1984) 37:1–9. doi: 10.1016/0044-8486(84)90039-5
CrossRef Full Text |
Google Scholar
59. Sajjadi M. Effect of phytic acid and phytase on feed intake, growth, digestibility and tripsin activity in Atlantic salmon (
Salmo salar L.).
Aquaculture Nutr. (2015) 10:135–42. doi: 10.1111/j.1365-2095.2003.00290.x
CrossRef Full Text
60. Sarwar Gilani G, Wu Xiao C, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.
Br J Nutr. (2012) 108:S315–32. doi: 10.1017/S0007114512002371
PubMed Abstract |
CrossRef Full Text |
Google Scholar
61. Spinelli J, Houle CR, Wekell JC. The effect of phytates on the growth of rainbow trout (
Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium.
Aquaculture. (1983) 30:71–83. doi: 10.1016/0044-8486(83)90153-9
CrossRef Full Text |
Google Scholar
62. Burel C, Boujard T, Kaushik SJ, Boeuf G, Mol KA, Van der Geyten S. Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout.
Gen Comp Endocrinol. (2001) 124:343–58. doi: 10.1006/gcen.2001.7723
PubMed Abstract |
CrossRef Full Text |
Google Scholar
63. Higgs DA, Mcbride JR, Markert JR, Dosanjh BS, Plotnikoff MD, Clark WC, et al. Evaluation of Tower and Candle rapeseed (canola) meal and Bronowski rapeseed protein concentrate as protein supplements in practical dry diets for juvenile chinook salmon (
Oncorhynchus tshawytscha).
Aquaculture. (1982) 29:1–31. doi: 10.1016/0044-8486(82)90030-8
CrossRef Full Text |
Google Scholar
64. Jiang J, Shi D, Zhou XQ, Feng L, Liu Y, Jiang WD, et al. Effects of lysine and methionine supplementation on growth, body composition and digestive function of grass carp (
Ctenopharyngodon idella) fed plant protein diets using high-level canola meal.
Aquaculture Nutr. (2016) 22:1126–33. doi: 10.1111/anu.12339
CrossRef Full Text |
Google Scholar
65. Hu L, Yun B, Xue M, Wang J, Wu X, Zheng Y, et al. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (
Lateolabrax japonicus).
Aquaculture. (2013) 372–5:52–61. doi: 10.1016/j.aquaculture.2012.10.025
CrossRef Full Text |
Google Scholar
66. Men KK, Ai QH, Mai KS, Xu W, Zhang Y, Zhou H, et al. Effects of dietary corn gluten meal on growth, digestion and protein metabolism in relation to IGF-I gene expression of Japanese seabass,
Lateolabrax japonicus.
Aquaculture. (2014) 428–9:303–9. doi: 10.1016/j.aquaculture.2014.03.028
CrossRef Full Text |
Google Scholar
67. Enami HR. A review of using canola/rapeseed meal in aquaculture feeding.
J Fish Aquat Sci. (2011) 6:22–36. doi: 10.3923/jfas.2011.22.36
CrossRef Full Text |
Google Scholar
68. Neis E, Dejong C, Rensen S. The role of microbial amino acid metabolism in host metabolism.
Nutrients. (2015) 7:2930–46. doi: 10.3390/nu7042930
PubMed Abstract |
CrossRef Full Text |
Google Scholar
69. Hoseinifar SH, Sun YZ, Caipang CM. Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view.
Aquac. Res. (2017) 48:1380–91. doi: 10.1111/are.13239
CrossRef Full Text |
Google Scholar
70. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis.
Nat Rev Microbiol. (2008) 6:121–31. doi: 10.1038/nrmicro1817
PubMed Abstract |
CrossRef Full Text |
Google Scholar
71. Clements KD, Angert ER, Montgomery WL, Choat JH. Intestinal microbiota in fishes: what’s known and what’s not.
Mol. Ecol. (2014) 23:1891–8. doi: 10.1111/mec.12699
PubMed Abstract |
CrossRef Full Text |
Google Scholar
72. Kuz’mina VV, Skvortsova EG, Shalygin MV, Kovalenko KE. Role of peptidases of the intestinal microflora and prey in temperature adaptations of the digestive system in planktivorous and benthivorous fish.
Fish Physiol Biochem. (2015) 41:1359–68. doi: 10.1007/s10695-015-0091-4
PubMed Abstract |
CrossRef Full Text |
Google Scholar
73. Givens CE, Ransom B, Bano N, Hollibough J. Comparison of the gut microbiomes of 12 bony fish and 3 shark species.
Mar Ecol Progr. (2015) 518:209–23. doi: 10.3354/meps11034
CrossRef Full Text |
Google Scholar
74. Zhou MY, Chen XL, Zhao HL, Dang HY, Luan XW, Zhang XY. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea.
Microb Ecol. (2009) 58:582–90. doi: 10.1007/s00248-009-9506-z
PubMed Abstract |
CrossRef Full Text |
Google Scholar
75. Liu H, Guo X, Gooneratne R, Zeng C, Zhan F, Wang W, et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels.
Sci Rep. (2016) 6:24340. doi: 10.1038/srep24340
PubMed Abstract |
CrossRef Full Text |
Google Scholar
76. Douglas A. Microbial brokers of Insect-plant interactions revisited.
J Chem Ecol. (2013) 39:952–61. doi: 10.1007/s10886-013-0308-x
PubMed Abstract |
CrossRef Full Text |
Google Scholar
77. Krueger WK, Gutierrez-Ban Uelos H, Carstens GE, Mind BR, Pinchak WE, Gomez RR, et al. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet.
Anim Feed Sci Technol. (2010) 159: 1–9. doi: 10.1016/j.anifeedsci.2010.05.003
CrossRef Full Text |
Google Scholar
78. Zhang B, Xu X, Zhu L. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter.
Sci Rep. (2017) 7:179–91. doi: 10.1038/s41598-017-17743-x
PubMed Abstract |
CrossRef Full Text
79. Zhao J, Li Y, Chen X, Li Y. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors.
Bioresour Technol. (2018) 255:22–8. doi: 10.1016/j.biortech.2018.01.106
PubMed Abstract |
CrossRef Full Text |
Google Scholar
80. Stone DAJ, Allan GL, Anderson AJ. Carbohydrate utilization by juvenile silver perch,
Bidyanus bidyanus (Mitchell). II Digestibility and utilization of starch and its breakdown products.
Aquaculture Res. (2015) 34:109–21. doi: 10.1046/j.1365-2109.2003.00776.x
CrossRef Full Text |
Google Scholar
81. Hidalgo MC, Urea E, Sanz A. Comparative study of digestive enzymes in fish with different nutritional habits.
Proteol Amyl Act Aquaculture. (1999) 170:267–83. doi: 10.1016/S0044-8486(98)00413-X
CrossRef Full Text |
Google Scholar
82. Lanari D, Poli BM, Ballestrazzi R, Lupi P, D’Agaro E, Mecattib M, et al. The effects of dietary fat and NFE levels on growing European sea bass (
Dicentrarchus labrax L.). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency.
Aquaculture. (1999) 179:351–64. doi: 10.1016/S0044-8486(99)00170-2
CrossRef Full Text |
Google Scholar
83. da Costa G, Lamy E, Capela e Silva F, Andersen J, Sales Baptista E, Coelho AV. Salivary Amylase induction by tannin-enriched diets as a possible countermeasure against tannins.
J Chem Ecol. (2008) 34:376–87. doi: 10.1007/s10886-007-9413-z
PubMed Abstract |
CrossRef Full Text |
Google Scholar
84. Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4→8) catechin (procyanidin).
J Agricult Food Chem. (1998) 46:2590–5. doi: 10.1021/jf971097k
CrossRef Full Text |
Google Scholar
85. Lu Y, Bennick A. Interaction of tannin with human salivary proline-rich proteins.
Arch Oral Biol. (1998) 43:717–28. doi: 10.1016/S0003-9969(98)00040-5
PubMed Abstract |
CrossRef Full Text |
Google Scholar
86. Tian LX.
Studies on Carbohydrate Metabolism of Grass Carp. Guangdong: Sun Yat-sen University. (2002). p. 59–66.
87. Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.
Proc Natl Acad Sci USA. (2014) 111:e3708–3717. doi: 10.1073/pnas.1406156111
PubMed Abstract |
CrossRef Full Text |
Google Scholar
88. Zanaroli G, Balloi A, Negroni A, Borruso L, Daffonchio D, Fava F. A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under
in situ-like biogeochemical conditions.
J Hazard Mater. (2012) 209–10:449–57. doi: 10.1016/j.jhazmat.2012.01.042
CrossRef Full Text |
Google Scholar
89. Fukui S, Kuno S, Toraya T. Distribution of coenzyme B
12-dependent diol dehydratase and glycerol dehydratase in selected genera of
Enterobacteriaceae and
Propionibacteriaceae.
J Bacteriol. (1980) 141:1439–42.
PubMed Abstract |
Google Scholar
90. Finegold SM, Vaisanen ML, Molitoris DR, Tomzynski TJ, Song Y, Liu C.
Cetobacterium somerae sp. nov from human feces and emended description of the genus.
Cetobact Syst Appl Microbiol. (2003) 26:177–81. doi: 10.1078/072320203322346010
PubMed Abstract |
CrossRef Full Text |
Google Scholar
91. Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, et al. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (
Dicentrarchus Labrax).
Aquaculture. (1998) 161:169–86. doi: 10.1016/S0044-8486(97)00268-8
CrossRef Full Text |
Google Scholar
92. Tian LX, Liu YJ, Yang HJ, Liang GY, Niu J. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (
Ctenopharyngodon idella).
Aquaculture Int. (2012) 20:283–93. doi: 10.1007/s10499-011-9456-6
CrossRef Full Text |
Google Scholar
93. Nyman ME, Björck IM.
In vivo effects of phytic acid and polyphenols on the bioavailability of polysaccharides and other nutrients.
J Food Sci. (1989) 54:1332–5. doi: 10.1111/j.1365-2621.1989.tb05985.x
CrossRef Full Text |
Google Scholar
94. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology.
Proc Natl Acad Sci USA. (2005) 102:11070–5. doi: 10.1073/pnas.0504978102
PubMed Abstract |
CrossRef Full Text |
Google Scholar
95. Baeverfjord G. Development and regression of soybean meal induced enteritis in Atlantic salmon,
Salmo salar L. distal intestine: a comparison with the intestines of fasted fish.
J Fish Dis. (1996) 19:375–87. doi: 10.1111/j.1365-2761.1996.tb00376.x
CrossRef Full Text |
Google Scholar
96. Zhang M, Wen H, Jiang M, Wu F. Effects of dietary rapeseed meal levels on growth, liver tissue strusture and some nonspecific immunity indices of juvenile GIFT tilapia
(Oreochromis niloticus).
J Fish China. (2011) 35:748–55. doi: 10.3724/SP.J.1231.2011.17207
CrossRef Full Text |
Google Scholar
97. Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, et al. Effects of plant-based diets on the distal gut microbiome of rainbow trout (
Oncorhynchus mykiss).
Aquaculture. (2012) 350–3:134–42. doi: 10.1016/j.aquaculture.2012.04.005
CrossRef Full Text |
Google Scholar
98. Reveco FE, Øverland M, Romarheim OH, Mydland LH. Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (
Salmo salar L.).
Aquaculture. (2014) 420–1:262–9. doi: 10.1016/j.aquaculture.2013.11.007
CrossRef Full Text |
Google Scholar
99. Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, et al. Effects of dietary soybean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (
Salmo salar L.).
Br J Nutr. (2007) 97:699–713. doi: 10.1017/S0007114507381397
CrossRef Full Text |
Google Scholar
100. Connell JH. Intermediate-disturbance hypothesis.
Science. (1979) 204:1344–5. doi: 10.1126/science.204.4399.1345
PubMed Abstract |
CrossRef Full Text |
Google Scholar
101. Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey.
Sci Transl Med. (2012) 4:137–44. doi: 10.1126/scitranslmed.3004184
PubMed Abstract |
CrossRef Full Text
102. Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, et al. Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-4 active components, bioremediation and efficacy in fish and shellfish.
Rev Fish Sci Aquacul. (2019) 27:331–379. doi: 10.1080/23308249.2019.1597010
CrossRef Full Text |
Google Scholar
103. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture.
Microbiol Mol Biol Rev. (2000) 64:655–71. doi: 10.1128/MMBR.64.4.655-671.2000
PubMed Abstract |
CrossRef Full Text |
Google Scholar
104. Ringø E, Hoseinifar SH, Ghosh K, Van Doan H, Beck BR, Song SK. Lactic acid bacteria in finfish – an update.
Front Microbiol. (2018) 9:1818. doi: 10.3389/fmicb.2018.01818
PubMed Abstract |
CrossRef Full Text |
Google Scholar
105. Frei R, Akdis M, O’Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence.
Curr Opin Gastroenterol. (2015) 31:153–8. doi: 10.1097/MOG.0000000000000151
PubMed Abstract |
CrossRef Full Text |
Google Scholar
106. Burr G, Gatlin D, Ricke S. Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture.
J World Aquac Soc. (2005) 36:425–36. doi: 10.1111/j.1749-7345.2005.tb00390.x
CrossRef Full Text |
Google Scholar
107. Gajardo K, Rodiles A, Kortner TM, Krogdahl Å, Bakke AM, Merrifield DL. A high-resolution map of the gut microbiota in Atlantic salmon (
Salmo salar): a basis for comparative gut microbial research.
Sci Rep. (2016) 6:30893. doi: 10.1038/srep30893
PubMed Abstract |
CrossRef Full Text |
Google Scholar
Keywords:
Ctenopharyngodon idellus, hydrolysable tannin supplementation, rapeseed meal, metabolism, intestinal microbiota
Citation: Yao J, Chen P, Ringø E, Zhang G, Huang Z and Hua X (2019) Effect of Diet Supplemented With Rapeseed Meal or Hydrolysable Tannins on the Growth, Nutrition, and Intestinal Microbiota in Grass Carp (
Ctenopharyngodon idellus).
Front. Nutr. 6:154. doi: 10.3389/fnut.2019.00154
Received: 17 May 2019; Accepted: 11 September 2019;
Published: 25 September 2019.