fnut-06-00154

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2019.00154/full#supplementary-material

References

1. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. (2010) 90:859–904. doi: 10.1152/physrev.00045.2009 PubMed Abstract | CrossRef Full Text | Google Scholar 2. Bensussan NC, Routhiau VG. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. (2010) 10:735–44. doi: 10.1038/nri2850 CrossRef Full Text | Google Scholar 3. Llewellyn MS, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho GR. The biogeography of the Atlantic salmon (Salmo salar) gut microbiome. ISME J. (2016) 10:1280–4. doi: 10.1038/ismej.2015.189 PubMed Abstract | CrossRef Full Text | Google Scholar 4. Hartviksen M, Vecino JLG, Ringø E, Bakke AM, Wadsworth S, Krogdahl Å, et al. Alternative dietary protein sources for Atlantic salmon (Salmo salar L.) effect on intestinal microbiota, intestinal and liver histology and growth. Aquaculture Nutrit. (2014) 20:381–98. doi: 10.1111/anu.12087 CrossRef Full Text 5. Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl Å, et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquaculture Nutr. (2016) 22:219–82. doi: 10.1111/anu.12346 CrossRef Full Text | Google Scholar 6. Wang J, Tao Q, Wang Z, Mai K, Xu W, Zhang Y, et al. Effects of fish meal replacement by soybean meal with supplementation of functional compound additives on intestinal morphology and microbiome of Japanese seabass (Lateolabrax japonicus). Aquac Res. (2016) 48:2186–97. doi: 10.1111/are.13055 CrossRef Full Text | Google Scholar 7. Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R. PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PLoS ONE. (2012) 7:e31335. doi: 10.1371/journal.pone.0031335 PubMed Abstract | CrossRef Full Text | Google Scholar 8. Yaghoubi M, Mozanzadeh MT, Marammazi JG, Safari O, Gisbert E. Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture. (2016) 464:50–9. doi: 10.1016/j.aquaculture.2016.06.002 CrossRef Full Text | Google Scholar 9. Merrifield DL, Dimitroglou A, Bradley G, Baker RT, Davies SJ. Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. (2010) 32:755–66. doi: 10.1111/j.1365-2761.2009.01052.x PubMed Abstract | CrossRef Full Text | Google Scholar 10. Zhou Z, Ringø E, Olsen RE, Song SK. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: a review. Aquaculture Nutr. (2016) 24:644–65. doi: 10.1111/anu.12532 CrossRef Full Text | Google Scholar 11. Refstie S, Landsverk T, Bakke-McKellep AM, Ringø E, Sundby A, Shearer KD, et al. Digestive capacity, intestinal morphology, and microflora of 1-year and 2-year old Atlantic cod (Gadus morhua) fed standard or bioprocessed soybean meal. Aquaculture. (2006) 261:269–84. doi: 10.1016/j.aquaculture.2006.07.011 PubMed Abstract | CrossRef Full Text | Google Scholar 12. Yuan X, Zhou Y, Liang XF, Guo X, Fang L, Li J, et al. Effect of dietary glutathione supplementation on the biological value of rapeseed meal to juvenile grass carp, Ctenopharyngodon idellusAquaculture Nutr. (2015) 21:73–84. doi: 10.1111/anu.12142 CrossRef Full Text | Google Scholar 13. Li Y, Yang P, Zhang Y, Zhang Y, Ai Q, Xu W, et al. Effects of dietary glycinin on the growth performance, digestion, intestinal morphology and bacterial community of juvenile turbot, Scophthalmus maximus L. Aquaculture. (2017) 479:125–33. doi: 10.1016/j.aquaculture.2017.05.008 CrossRef Full Text | Google Scholar 14. Silva FC, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ. Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead sea bream (Sparus aurata) and intestinal contents in goldfish (Carassius auratus). FEMS Microbiol. Ecol. (2011) 78:285–96. doi: 10.1111/j.1574-6941.2011.01155.x PubMed Abstract | CrossRef Full Text | Google Scholar 15. Pettersson A, Johnsson L, Brännäs E, Pickova J. Effects of rapeseed oil replacement in fish feed on lipid composition and self-selection by rainbow trout (Oncorhynchus mykiss). Aquaculture Nutr. (2010) 15:577–86. doi: 10.1111/j.1365-2095.2008.00625.x CrossRef Full Text | Google Scholar 16. Tanemura N, Okano K, Sugiura S, Sugiura S. Effects of culturing rapeseed meal, soybean meal, macrophyte meal, and algal meal with three species of white-rot fungi on their in vitro and in vivo digestibilities evaluated using rainbow trout. Aquaculture. (2016) 453:130–4. doi: 10.1016/j.aquaculture.2015.12.001 CrossRef Full Text | Google Scholar 17. Cheng Z, Ai Q, Mai K, Xu W. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass, Lateolabrax japonicusAquaculture. (2010) 305:102–8. doi: 10.1016/j.aquaculture.2010.03.031 CrossRef Full Text | Google Scholar 18. Satoh S, Higss DA, Dosanjh BS. Effect of extrusion processing on the nutritive value of canola meal for chinook salmon (Oncorhynchus tshawytscha) in seawater. Aquaculture Nutr. (2015) 4:115–22. doi: 10.1046/j.1365-2095.1998.00056.x CrossRef Full Text 19. Webster CD, Tiu LG, Tidwell JH, Grizzle JM. Growth and body composition of channel catfish (Ictalurus punctatus) fed diets containing various percentages of canola meal. Aquaculture. (1997) 150:103–12. doi: 10.1016/S0044-8486(96)01471-8 CrossRef Full Text | Google Scholar 20. Bu XY, Wang YY, Chen FY, Tang BB, Luo CZ, Wang Y, et al. An evaluation of replacing fishmeal with rapeseed meal in the diet of Pseudobagrus ussuriensis: growth, feed utilization, nonspecific immunity, and growth-related gene expression. J World Aquac Soc. (2018) 49:1068–80. doi: 10.1111/jwas.12470 CrossRef Full Text | Google Scholar 21. Lim C, Beames RM, Eales JG, Prendergast AF, McLeese JM, Shearer KD, et al. Nutritive values of low and high fibre canola meals for shrimp (Penaeus vannamei). Aquaculture Nutr. (2015) 3:269–79. doi: 10.1046/j.1365-2095.1997.00048.x CrossRef Full Text | Google Scholar 22. Ngo DT, Pirozzi I, Glencross B. Digestibility of canola meals in barramundi (Asian seabass; Lates calcarifer). Aquaculture. (2015) 435:442–9. doi: 10.1016/j.aquaculture.2014.10.031 CrossRef Full Text | Google Scholar 23. Rasid R, Brown J, Pratoomyot J, Monroig O, Shinn AP. Growth performance, nutrient utilisation and body composition of Macrobrachium rosenbergii fed graded levels of phytic acid. Aquaculture. (2017) 479:850–6. doi: 10.1016/j.aquaculture.2017.07.029 CrossRef Full Text | Google Scholar 24. Ghosh K, Ray KA, Ringø E. Applications of plant ingredients for tropical and subtropical freshwater finfish: possibilities and challenges. Rev Aquaculture. (2018) 11:93–815. doi: 10.1111/raq.12258 CrossRef Full Text | Google Scholar 25. Chung KT, Wei CI, Johnson MG. Are tannins a double-edged sword in biology and health?. Trends Food Sci Techn. (1998) 9:168–75. doi: 10.1016/S0924-2244(98)00028-4 CrossRef Full Text | Google Scholar 26. Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. (2001) 199:197–227. doi: 10.1016/S0044-8486(01)00526-9 CrossRef Full Text | Google Scholar 27. Tosi G, Massi P, Antongiovanni M, Buccioni A, Minieri S, Marenchino L, et al. Efficacy test of a hydrolysable tannin extract against necrotic enteritis in challenged broiler chickens. Ital J Anim Sci. (2013) 12:392–5. doi: 10.4081/ijas.2013.e62 CrossRef Full Text | Google Scholar 28. Bilić-Šobot D, Kubale V, Škrlep M, Candek-Potokar M, Prevolnik Povše M, Fazarinc G. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs. Arch Anim Nutr. (2016) 70:378–88. doi: 10.1080/1745039X.2016.1206735 PubMed Abstract | CrossRef Full Text | Google Scholar 29. Barszcz M, Taciak M, Tuśnio A, Skomiał J. Effects of dietary level of tannic acid and protein on internal organ weights and biochemical blood parameters of rats. PLoS ONE. (2018) 13:e0190769. doi: 10.1371/journal.pone.0190769 PubMed Abstract | CrossRef Full Text | Google Scholar 30. Rivera-Méndez C, Plascencia A, Torrentera N, Zinn RA. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase. J Appl Anim Res. (2016) 45:199–203. doi: 10.1080/09712119.2016.1141776 CrossRef Full Text 31. Chen L, Feng L, Jiang WD, Jiang J, Wu P, Zhao J. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet. Fish Shellfish Immunol. (2015) 47:470–84. doi: 10.1016/j.fsi.2015.09.037 PubMed Abstract | CrossRef Full Text | Google Scholar 32. Safari O, Boldaji FA. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutr. (2015) 11:139–46. doi: 10.1111/j.1365-2095.2004.00333.x CrossRef Full Text | Google Scholar 33. Zhang D, Wu Z, Chen X, Wang H, Guo D. Effect of Bacillus subtilis on intestinal apoptosis of grass carp Ctenopharyngodon idella orally challenged with Aeromonas hydrophila. Fish Sci. (2018) 85:187–97. doi: 10.1007/s12562-018-1272-8 CrossRef Full Text | Google Scholar 34. Ma L, Huang F, Wu JK, Yong WY, Cao JM. Effects of different rapeseed meal levels on growth, serum biochemical indices and toxins residues in Ctenoparyngodon idellusJ Fish China. (2005) 29:798–803. 35. Tan Q, Liu Q, Chen X, Wang M, Wu Z. Growth performance, biochemical indices and hepatopancreatic function of grass carp, Ctenopharyngodon idellus, would be impaired by dietary rapeseed meal. Aquaculture. (2013) 414–5, 119–26. doi: 10.1016/j.aquaculture.2013.07.036 CrossRef Full Text | Google Scholar 36. Suya J. Effects of feeding four kinds of rapeseed meal on growth performance of grass carp (Ctenopharyngodon idella). Chin J Anim Nutr. (2011) 23:349–56. Google Scholar 37. Prusty AK, Sahu NP, Pal AK, Reddy AK. Effect of dietary tannin on growth and haemato-immunological parameters of Labeo rohita (Hamilton) fingerlings. Anim. Feed Sci. Technol. (2007) 136:96–108. doi: 10.1016/j.anifeedsci.2006.08.023 CrossRef Full Text | Google Scholar 38. Buyukcapar HM, Atalay A, Kamalak A. Growth performance of Nile Tilapia (Oreochromis niloticus) fed with diets containing different levels of hydrolysable and condensed tannin. J Agricult Sci Techn. (2011) 13:1045–51. doi: 10.1007/s10460-011-9341-y CrossRef Full Text | Google Scholar 39. Wang SM, Chen SL, Cui YB. On The procedures of chloroform-methanol extraction for the determination of lipid content of fish samples. Acta Hydrobiologica Sinica. (1993) 17:193–6. 40. Natalia Y, Hashim R, Ali A, Chong A. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture. (2004) 233:305–20. doi: 10.1016/j.aquaculture.2003.08.012 CrossRef Full Text | Google Scholar 41. Worthington. Worthington Enzyme Manual: Enzymes and Related Biochemicals. Lakewood, NJ: Worthington Biochemical Corporation (1993). p. 41. 42. Borlongan IG. Studies on the digestive lipases of milkfish, Chanos chanosAquaculture. (1990) 89:315–25. doi: 10.1016/0044-8486(90)90135-A CrossRef Full Text | Google Scholar 43. Xiong F, Wu SG, Zhang J, Jakovlić I, Li WX, Zou H. Dietary bile salt types influence the composition of biliary bile acids and gut microbiota in grass carp. Front. Microbiol. (2018) 9:2209. doi: 10.3389/fmicb.2018.02209 PubMed Abstract | CrossRef Full Text | Google Scholar 44. Lozupone C, Hamady M, Knight R. UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform. (2006) 7:371–85. doi: 10.1186/1471-2105-7-371 PubMed Abstract | CrossRef Full Text | Google Scholar 45. Yao JT, Kong C, Hua XM, Yang JF, Liu T, Wang G, et al. T1R1 expression in obscure puffer (Takifugu fasciatus) is associated with effect of dietary soybean antigenic protein on intestinal health. Aquaculture. (2018) 501:202–12. doi: 10.1016/j.aquaculture.2018.11.010 CrossRef Full Text | Google Scholar 46. Wu ZX, Feng X, Xie LL, Peng XY, Yuan J, Chen XX. Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora. J Appl Ichthyol. (2012) 28:721–7. doi: 10.1111/j.1439-0426.2012.01968.x CrossRef Full Text | Google Scholar 47. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. (2011) 334:105–8. doi: 10.1126/science.1208344 PubMed Abstract | CrossRef Full Text | Google Scholar 48. André D, de Lange CFM, France J, Bureau J. Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss). Aquaculture. (2007) 273:165–81. doi: 10.1016/j.aquaculture.2007.09.026 CrossRef Full Text | Google Scholar 49. Ngo DT, Wade NM, Pirozzi I, Glencross BD. Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian seabass; Lates calcarifer). Aquaculture. (2016) 464:95–105. doi: 10.1016/j.aquaculture.2016.06.020 CrossRef Full Text | Google Scholar 50. Luo Y, Ai Q, Mai K, Zhang W, Xu W, Zhang Y, et al. Effects of dietary rapeseed meal on growth performance, digestion and protein metabolism in relation to gene expression of juvenile cobia (Rachycentron canadum). Aquaculture. (2012) 368–9:109–16. doi: 10.1016/j.aquaculture.2012.09.013 CrossRef Full Text | Google Scholar 51. Burel C, Boujard T, Escaffre AM, Kaushik SJ, Boeuf G, Mol KA, et al. Dietary low-glucosinolate rapeseed meal affects thyroid status and nutrient utilization in rainbow trout (Oncorhynchus mykiss)Br J Nutr. (2000) 83:653–64. doi: 10.1017/S0007114500000830 PubMed Abstract | CrossRef Full Text | Google Scholar 52. Zhou QC, Yue YR. Effect of replacing soybean meal with canola meal on growth, feed utilization and haematological indices of juvenile hybrid tilapia, Oreochromis niloticus × Oreochromis aureusAquac Res. (2010) 41:982–90. doi: 10.1111/j.1365-2109.2009.02381.x CrossRef Full Text | Google Scholar 53. Omnes MH, Goasduff JL, Le Hervé D, Le Bayon N, Quazuguel P, Robin JH. Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.). Aquaculture Reports. (2017) 6:21–7. doi: 10.1016/j.aqrep.2017.01.004 CrossRef Full Text | Google Scholar 54. Moseley G. The effect of diets containing field beans of high or low polyphenolic content on the activity of digestive enzymes in the intestines of rats. J Sci Food Agric. (2010) 31:255–9. doi: 10.1002/jsfa.2740310307 PubMed Abstract | CrossRef Full Text 55. Mehansho H, Hagerman A, Clements S, Butler L, Rogler J, Carlson DM. Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels. Proc Natl Acad Sci USA. (1983) 80:48–52. doi: 10.1073/pnas.80.13.3948 PubMed Abstract | CrossRef Full Text | Google Scholar 56. Singleton VL, Kratzer FH. Toxicity and related physiological activity of phenolic substances of plant origin. J Agric Food Chem. (1969) 17:497–512. doi: 10.1021/jf60163a004 CrossRef Full Text | Google Scholar 57. Varanka Z, Rojik I, Varanka I, Nemcsók J, Abrahám M. Biochemical and morphological changes in carp (Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid. Comparat Biochem Physiol Part C Toxicol Pharmacol. (2001) 128:467–77. doi: 10.1016/S1532-0456(01)00166-1 PubMed Abstract | CrossRef Full Text | Google Scholar 58. Blazer VS, Wolke RE. The effects of α-tocopherol on the immune response and non-specific resistance factors of rainbow trout (Salmo gairdneri Richardson). Aquaculture. (1984) 37:1–9. doi: 10.1016/0044-8486(84)90039-5 CrossRef Full Text | Google Scholar 59. Sajjadi M. Effect of phytic acid and phytase on feed intake, growth, digestibility and tripsin activity in Atlantic salmon (Salmo salar L.). Aquaculture Nutr. (2015) 10:135–42. doi: 10.1111/j.1365-2095.2003.00290.x CrossRef Full Text 60. Sarwar Gilani G, Wu Xiao C, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr. (2012) 108:S315–32. doi: 10.1017/S0007114512002371 PubMed Abstract | CrossRef Full Text | Google Scholar 61. Spinelli J, Houle CR, Wekell JC. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture. (1983) 30:71–83. doi: 10.1016/0044-8486(83)90153-9 CrossRef Full Text | Google Scholar 62. Burel C, Boujard T, Kaushik SJ, Boeuf G, Mol KA, Van der Geyten S. Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout. Gen Comp Endocrinol. (2001) 124:343–58. doi: 10.1006/gcen.2001.7723 PubMed Abstract | CrossRef Full Text | Google Scholar 63. Higgs DA, Mcbride JR, Markert JR, Dosanjh BS, Plotnikoff MD, Clark WC, et al. Evaluation of Tower and Candle rapeseed (canola) meal and Bronowski rapeseed protein concentrate as protein supplements in practical dry diets for juvenile chinook salmon (Oncorhynchus tshawytscha). Aquaculture. (1982) 29:1–31. doi: 10.1016/0044-8486(82)90030-8 CrossRef Full Text | Google Scholar 64. Jiang J, Shi D, Zhou XQ, Feng L, Liu Y, Jiang WD, et al. Effects of lysine and methionine supplementation on growth, body composition and digestive function of grass carp (Ctenopharyngodon idella) fed plant protein diets using high-level canola meal. Aquaculture Nutr. (2016) 22:1126–33. doi: 10.1111/anu.12339 CrossRef Full Text | Google Scholar 65. Hu L, Yun B, Xue M, Wang J, Wu X, Zheng Y, et al. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture. (2013) 372–5:52–61. doi: 10.1016/j.aquaculture.2012.10.025 CrossRef Full Text | Google Scholar 66. Men KK, Ai QH, Mai KS, Xu W, Zhang Y, Zhou H, et al. Effects of dietary corn gluten meal on growth, digestion and protein metabolism in relation to IGF-I gene expression of Japanese seabass, Lateolabrax japonicusAquaculture. (2014) 428–9:303–9. doi: 10.1016/j.aquaculture.2014.03.028 CrossRef Full Text | Google Scholar 67. Enami HR. A review of using canola/rapeseed meal in aquaculture feeding. J Fish Aquat Sci. (2011) 6:22–36. doi: 10.3923/jfas.2011.22.36 CrossRef Full Text | Google Scholar 68. Neis E, Dejong C, Rensen S. The role of microbial amino acid metabolism in host metabolism. Nutrients. (2015) 7:2930–46. doi: 10.3390/nu7042930 PubMed Abstract | CrossRef Full Text | Google Scholar 69. Hoseinifar SH, Sun YZ, Caipang CM. Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac. Res. (2017) 48:1380–91. doi: 10.1111/are.13239 CrossRef Full Text | Google Scholar 70. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat Rev Microbiol. (2008) 6:121–31. doi: 10.1038/nrmicro1817 PubMed Abstract | CrossRef Full Text | Google Scholar 71. Clements KD, Angert ER, Montgomery WL, Choat JH. Intestinal microbiota in fishes: what’s known and what’s not. Mol. Ecol. (2014) 23:1891–8. doi: 10.1111/mec.12699 PubMed Abstract | CrossRef Full Text | Google Scholar 72. Kuz’mina VV, Skvortsova EG, Shalygin MV, Kovalenko KE. Role of peptidases of the intestinal microflora and prey in temperature adaptations of the digestive system in planktivorous and benthivorous fish. Fish Physiol Biochem. (2015) 41:1359–68. doi: 10.1007/s10695-015-0091-4 PubMed Abstract | CrossRef Full Text | Google Scholar 73. Givens CE, Ransom B, Bano N, Hollibough J. Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Progr. (2015) 518:209–23. doi: 10.3354/meps11034 CrossRef Full Text | Google Scholar 74. Zhou MY, Chen XL, Zhao HL, Dang HY, Luan XW, Zhang XY. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microb Ecol. (2009) 58:582–90. doi: 10.1007/s00248-009-9506-z PubMed Abstract | CrossRef Full Text | Google Scholar 75. Liu H, Guo X, Gooneratne R, Zeng C, Zhan F, Wang W, et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep. (2016) 6:24340. doi: 10.1038/srep24340 PubMed Abstract | CrossRef Full Text | Google Scholar 76. Douglas A. Microbial brokers of Insect-plant interactions revisited. J Chem Ecol. (2013) 39:952–61. doi: 10.1007/s10886-013-0308-x PubMed Abstract | CrossRef Full Text | Google Scholar 77. Krueger WK, Gutierrez-Ban Uelos H, Carstens GE, Mind BR, Pinchak WE, Gomez RR, et al. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim Feed Sci Technol. (2010) 159: 1–9. doi: 10.1016/j.anifeedsci.2010.05.003 CrossRef Full Text | Google Scholar 78. Zhang B, Xu X, Zhu L. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter. Sci Rep. (2017) 7:179–91. doi: 10.1038/s41598-017-17743-x PubMed Abstract | CrossRef Full Text 79. Zhao J, Li Y, Chen X, Li Y. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresour Technol. (2018) 255:22–8. doi: 10.1016/j.biortech.2018.01.106 PubMed Abstract | CrossRef Full Text | Google Scholar 80. Stone DAJ, Allan GL, Anderson AJ. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). II Digestibility and utilization of starch and its breakdown products. Aquaculture Res. (2015) 34:109–21. doi: 10.1046/j.1365-2109.2003.00776.x CrossRef Full Text | Google Scholar 81. Hidalgo MC, Urea E, Sanz A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteol Amyl Act Aquaculture. (1999) 170:267–83. doi: 10.1016/S0044-8486(98)00413-X CrossRef Full Text | Google Scholar 82. Lanari D, Poli BM, Ballestrazzi R, Lupi P, D’Agaro E, Mecattib M, et al. The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture. (1999) 179:351–64. doi: 10.1016/S0044-8486(99)00170-2 CrossRef Full Text | Google Scholar 83. da Costa G, Lamy E, Capela e Silva F, Andersen J, Sales Baptista E, Coelho AV. Salivary Amylase induction by tannin-enriched diets as a possible countermeasure against tannins. J Chem Ecol. (2008) 34:376–87. doi: 10.1007/s10886-007-9413-z PubMed Abstract | CrossRef Full Text | Google Scholar 84. Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4→8) catechin (procyanidin). J Agricult Food Chem. (1998) 46:2590–5. doi: 10.1021/jf971097k CrossRef Full Text | Google Scholar 85. Lu Y, Bennick A. Interaction of tannin with human salivary proline-rich proteins. Arch Oral Biol. (1998) 43:717–28. doi: 10.1016/S0003-9969(98)00040-5 PubMed Abstract | CrossRef Full Text | Google Scholar 86. Tian LX. Studies on Carbohydrate Metabolism of Grass Carp. Guangdong: Sun Yat-sen University. (2002). p. 59–66. 87. Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci USA. (2014) 111:e3708–3717. doi: 10.1073/pnas.1406156111 PubMed Abstract | CrossRef Full Text | Google Scholar 88. Zanaroli G, Balloi A, Negroni A, Borruso L, Daffonchio D, Fava F. A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. J Hazard Mater. (2012) 209–10:449–57. doi: 10.1016/j.jhazmat.2012.01.042 CrossRef Full Text | Google Scholar 89. Fukui S, Kuno S, Toraya T. Distribution of coenzyme B12-dependent diol dehydratase and glycerol dehydratase in selected genera of Enterobacteriaceae and PropionibacteriaceaeJ Bacteriol. (1980) 141:1439–42. PubMed Abstract | Google Scholar 90. Finegold SM, Vaisanen ML, Molitoris DR, Tomzynski TJ, Song Y, Liu C. Cetobacterium somerae sp. nov from human feces and emended description of the genus. Cetobact Syst Appl Microbiol. (2003) 26:177–81. doi: 10.1078/072320203322346010 PubMed Abstract | CrossRef Full Text | Google Scholar 91. Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, et al. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus Labrax). Aquaculture. (1998) 161:169–86. doi: 10.1016/S0044-8486(97)00268-8 CrossRef Full Text | Google Scholar 92. Tian LX, Liu YJ, Yang HJ, Liang GY, Niu J. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella). Aquaculture Int. (2012) 20:283–93. doi: 10.1007/s10499-011-9456-6 CrossRef Full Text | Google Scholar 93. Nyman ME, Björck IM. In vivo effects of phytic acid and polyphenols on the bioavailability of polysaccharides and other nutrients. J Food Sci. (1989) 54:1332–5. doi: 10.1111/j.1365-2621.1989.tb05985.x CrossRef Full Text | Google Scholar 94. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. (2005) 102:11070–5. doi: 10.1073/pnas.0504978102 PubMed Abstract | CrossRef Full Text | Google Scholar 95. Baeverfjord G. Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L. distal intestine: a comparison with the intestines of fasted fish. J Fish Dis. (1996) 19:375–87. doi: 10.1111/j.1365-2761.1996.tb00376.x CrossRef Full Text | Google Scholar 96. Zhang M, Wen H, Jiang M, Wu F. Effects of dietary rapeseed meal levels on growth, liver tissue strusture and some nonspecific immunity indices of juvenile GIFT tilapia (Oreochromis niloticus)J Fish China. (2011) 35:748–55. doi: 10.3724/SP.J.1231.2011.17207 CrossRef Full Text | Google Scholar 97. Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, et al. Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture. (2012) 350–3:134–42. doi: 10.1016/j.aquaculture.2012.04.005 CrossRef Full Text | Google Scholar 98. Reveco FE, Øverland M, Romarheim OH, Mydland LH. Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (Salmo salar L.). Aquaculture. (2014) 420–1:262–9. doi: 10.1016/j.aquaculture.2013.11.007 CrossRef Full Text | Google Scholar 99. Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, et al. Effects of dietary soybean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr. (2007) 97:699–713. doi: 10.1017/S0007114507381397 CrossRef Full Text | Google Scholar 100. Connell JH. Intermediate-disturbance hypothesis. Science. (1979) 204:1344–5. doi: 10.1126/science.204.4399.1345 PubMed Abstract | CrossRef Full Text | Google Scholar 101. Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci Transl Med. (2012) 4:137–44. doi: 10.1126/scitranslmed.3004184 PubMed Abstract | CrossRef Full Text 102. Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, et al. Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-4 active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquacul. (2019) 27:331–379. doi: 10.1080/23308249.2019.1597010 CrossRef Full Text | Google Scholar 103. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev. (2000) 64:655–71. doi: 10.1128/MMBR.64.4.655-671.2000 PubMed Abstract | CrossRef Full Text | Google Scholar 104. Ringø E, Hoseinifar SH, Ghosh K, Van Doan H, Beck BR, Song SK. Lactic acid bacteria in finfish – an update. Front Microbiol. (2018) 9:1818. doi: 10.3389/fmicb.2018.01818 PubMed Abstract | CrossRef Full Text | Google Scholar 105. Frei R, Akdis M, O’Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol. (2015) 31:153–8. doi: 10.1097/MOG.0000000000000151 PubMed Abstract | CrossRef Full Text | Google Scholar 106. Burr G, Gatlin D, Ricke S. Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aquac Soc. (2005) 36:425–36. doi: 10.1111/j.1749-7345.2005.tb00390.x CrossRef Full Text | Google Scholar 107. Gajardo K, Rodiles A, Kortner TM, Krogdahl Å, Bakke AM, Merrifield DL. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Sci Rep. (2016) 6:30893. doi: 10.1038/srep30893 PubMed Abstract | CrossRef Full Text | Google Scholar Keywords: Ctenopharyngodon idellus, hydrolysable tannin supplementation, rapeseed meal, metabolism, intestinal microbiota Citation: Yao J, Chen P, Ringø E, Zhang G, Huang Z and Hua X (2019) Effect of Diet Supplemented With Rapeseed Meal or Hydrolysable Tannins on the Growth, Nutrition, and Intestinal Microbiota in Grass Carp (Ctenopharyngodon idellus). Front. Nutr. 6:154. doi: 10.3389/fnut.2019.00154 Received: 17 May 2019; Accepted: 11 September 2019; Published: 25 September 2019.

The Effects of Tannins in Monogastric Animals with Special Reference to Alternative Feed Ingredients

饲用单宁酸Abstract: Over recent years, the monogastric animal industry has witnessed an increase in feed prices due to several factors, and this trend is likely to continue. The hike in feed prices is mostly due to extreme competition over commonly used conventional ingredients. For this trend to be subdued, alternative ingredients of both plant and animal origin need to be sourced. These types of ingredients are investigated with the aim of substituting all or some of the conventional compounds. However, alternative ingredients often have a double-edged sword effect, in that they can supply animals with the necessary nutrients although they contain antinutritional factors such as tannins. Tannins are complex secondary metabolites commonly present in the plant kingdom, known to bind with protein and make it unavailable; however, recently they have been proven to have the potential to replace conventional ingredients, in addition to their health benefits, particularly the control of zoonotic pathogens such as Salmonella. Thus, the purpose of this review is to (1) classify the types of tannins present in alternative feed ingredients, and (2) outline the effects and benefits of tannins in monogastric animals. Several processing methods have been reported to reduce tannins in diets for monogastric animals; furthermore, these need to be cost-effective. It can thus be concluded that the level of inclusion of tannins in diets will depend on the type of ingredient and the animal species.单宁酸

Read More »

单宁酸产品特性

来源于天然植物提取的单宁酸,具有良好的抗腹泻、抗菌、抗氧化、抗寄生虫等功效,能够改善畜禽生长性能,提高饲料利用率,减少抗生素和氧化锌的使用,提高动物整体的健康程度及动物性产品的安全性。

Read More »

What is tannic acid?

单宁酸具有抗氧化作用,是一种天然的防腐剂,能有效避免红酒被氧化变酸,使长期储存的红酒能保持最佳状态。最近的研究发现,单宁对预防和治疗心血管疾病有较好的效果。心脑血管疾病仍是威胁人类健康的头号杀手,所以中老年人坚持每天喝适量的葡萄酒进行自我保健是一个很好的方法。另外,现在很多年轻人工作压力大,精神压力大,很多人都处于亚健康状态。因此,年轻人最好也养成喝红酒的习惯,这样可以安抚神经,缓解压力。

Read More »

单宁酸及其与不同有机氮化合物和酶的复杂相互作用:旧的范式与新的进展对比

单宁与蛋白质之间的相互作用已经研究了50多年,因为其独特的特性和在食品工业和药理学中的潜在用途。然而,随着单宁酸浓度对酶的调控以及与其他非蛋白氮化合物的潜在相互作用的新见解的提出,未来的研究还需要进行。应特别注意使用纯化和表征良好的单宁,因为植物提取物中多酚的化学成分和其他化合物的存在可能会显著影响单宁与氮化合物的相互作用。后续研究的目的应该是将这些结果推导到更复杂的、异质的、现实的体系中。总之,研究单宁酸与蛋白质之间的相互作用,以及其他有机化合物之间的相互作用的研究很可能会引起人们的极大关注,因为人们对多酚类化合物在人类健康和疾病治疗方面的普遍兴趣,同时也对其在饮料和食品工业中的作用产生了浓厚的兴趣。

Read More »

Tannins and Their Complex Interaction with Different Organic Nitrogen Compounds and Enzymes: Old Paradigms versus Recent Advances

Interactions between tannins and proteins have been studied for more than 50 years, because of their unique characteristics and potential use in food industry and pharmacology. However, with the new insights regarding regulation of enzymes by tannin concentration and the potential interaction with other non‐protein N compounds, future studies are needed. Special attention should be paid to the use of well‐purified and characterized tannins, because the chemistry of polyphenols and the presence of other compounds in plant extracts may significantly affect tannin interactions with N compounds. Follow‐up studies should aim to extrapolate these results to more complex, heterogenic, realistic systems. In conclusion, studies investigating the interactions between tannins and proteins, but also other organic compounds, are likely to attract significant attention due to the general interest in polyphenols with regard to human health and disease treatment, but also their role in the beverage and food industry.

Read More »

水解单宁对常见鱼类病原体的体外活性

这项体外研究表明,Silvafeed TSP(饲用单宁酸)对常见的细菌鱼病原体(如李斯特菌, 鼠疫耶尔森菌 和 沙门氏菌气单胞菌)具有很强的抗菌作用,在所有研究的剂量水平下,对沙门氏杆菌都有较强的抗菌效果,而对水生单胞菌有中等的效果,在较高的剂量范围内(0.40%和0.50%),对乳球菌和鲑鱼阴道球菌有轻微的效果。

Read More »